字体
关灯
上一页 进书架 回目录    存书签 下一页

130 好巧的毕论选题(2/6)

这就是在普通人群中并不算太著名但却极具实用价值的猜想问题。

生活中的三维空间这个命题其实很好理解。

因为无论西瓜长成什么样,总不可能在每个角度都长得如同细条。如果是长形的西瓜,竖直一刀切下去,切面就会较小,当然也可以用水平角度来切开它,这样切面就会大上许多。

可如果放到更高维度,就不是这么简单了。

但大家都很清楚,数学家天生就不是能让人省心的主,对于一个问题,他们总能从各种奇怪的角度来解读。于是数学界又提出了一个命题,为什么切开的西瓜要是平面?

能不能找到用来平分这个西瓜的最小曲面面积是多少?

这就是猜想最为关注的问题。

随着数学家进一步抽象, 猜想可以理解为这个西瓜在高维空间中的形状就是一个封装着气体的容器,找到最佳切面就是寻找到这个容器的瓶颈。想象一个,如果西瓜变成一个哑铃形状的容器,里面有一个气体分子在其中随机运动,那么哑铃中间连接部分越细,分子就越难跑到另一侧。

所以现在韩教授真正要解决的问题就是,找出在高维空间中这个凸的容器最细的地方到底能有多细。

说的更简单更粗暴就是要证明是否存在这么一个常数c,在任意维度这个常数c都是固定数值,如果有那么就说明这个西瓜在高维空间不可能像一个哑铃那样,两边大,中间连接部分可以非常细。因为这个常数c决定了其形态不可能有那么细的连接部分。

而如果无法证明这一点,那么一切就皆有可能,气体分子可能会在高维空间下长时间在容器的一侧运动,很难到另一侧去

所以解决了这个问题,就能对现有的计算机随机行走时间相应优化。

如果放到数学上,这个命题如果得到解决,就能加速了对近似凸体高维空间下的体积研究。

但事实上这虽然是个几何问题,可之前关于这个问题研究的突破,都是计算机界的科学家们做出的贡献。

早在九年前,就有一位计算机学家在研究这个问题时利用随机定位技术,来降低这个问题的维度上界,但效果并不明显。

到了六年前华盛顿大学的两位博士改进了前人的随机定位技术,进一步将因子,也就是用于描述瓶颈是否存在的因子,降低到了维度的四次根。

本章未完,请翻下一页继续阅读.........
上一页 进书架 回目录    存书签 下一页